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1. INTRODUCTION: DEFINITION
AND USES OF ABSOLUTE RISK

Individualized absolute risk is the probability that a
person with defined risk factors who is free of the disease
of interest at age a will be observed to develop the dis-
ease over the age interval (a, a + t). For example, the
chance that a 40-yr-old nulliparous white woman who
began menstruating at the age of 14, who has had no
breast biopsies, and whose mother had breast cancer, will
develop breast cancer by the age of 70 can be calculated
as 0.116, or 11.6%, using the Gail model for breast can-
cer risk (/). In this paper, breast cancer will usually be
the disease of interest, but the ideas apply to any disease.

It is important to distinguish absolute risk from rela-
tive risk, which is the ratio of the age-specific incidence
rate in a woman with given risk factors to that in a
woman without risk factors. In the previous example,
the woman’s relative risk is 2.76 compared to a 40-yr-old
woman with no risk factors. Relative risk is useful for
studying the association between a risk factor and dis-
ease; relative risks can be estimated from retrospective
evaluation of risk factors in diseased and non-diseased
subjects, namely case-control studies (2). Knowing that
a woman’s relative risk of disease is 2.76, however,
does not by itself define the chance that she will
develop the disease over a given time interval, namely
the absolute risk.

Absolute risk is influenced by several factors. Age is
usually one of the most influential factors, as the risk of
diseases such as cancer usually increases sharply with
age. The duration of the age interval (a, a + T) also
affects absolute risk, which increases with increasing
duration, T. The woman’s individual risk factors influ-
ence absolute risk. Finally, the absolute risk of a disease
like breast cancer is reduced by the chance of dying of
some other disease before breast cancer develops. Each
of these factors needs to be taken into account in calcu-
lating individualized absolute risk (see subheading 2)..

Absolute risk estimates are useful for medical
counseling. For example, a 40-year-old woman whose
absolute risk of developing breast cancer in the next 5 yr
is 0.5% might be advised to undergo routine annual
examinations with mammography, whereas a similar
woman with a projected 5-yr risk of 5% might consider
taking a preventive agent, such as tamoxifen (3) in
addition to mammographic surveillance. In making
such decisions, one must weigh the various risks and
benefits of the proposed intervention. For example,
tamoxifen is associated with an increased risk of
stroke, pulmonary embolus, deep vein thrombosis, and
endometrial cancer (4). A key ingredient for comparing
risks and benefits of an intervention such as tamoxifen is
an estimate of the absolute risks of the various health
outcomes in the presence and absence of the inter-
vention (3). Using such estimates of absolute risk and a
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categorization of potential adverse events into life-
threatening, severe, and other, Gail et al. (3) defined
categories of women for whom there was good evi-
dence that the benefits of tamoxifen outweighed the
risks. Such calculations required absolute risk estimates
for each of the potential adverse outcomes.

Absolute risk is also useful in designing prevention
trials. If the trial emphasis is on a single endpoint, such
as invasive breast cancer, the concept of absolute risk is
directly relevant. The power of a survival analysis
based on the logrank test to detect a preventive effect in
the active intervention arm compared to placebo
depends mainly on the total number of events (e.g.,
invasive breast cancers) that arise during the trial (5).
One can estimate the number of events for a given sam-
ple size by averaging the risk-factor-specific absolute
risks, calculated for trial duration, over the risk factor
distribution in the source population, and multiplying
the result by the sample size. Conversely, the required
sample size can be computed by dividing the required
number of events by the average absolute risk.

The design of an intervention study that examines
intervention effects on several health outcomes is more
complex. For example, Freedman et al. (6) proposed
various procedures for monitoring the several benefi-
cial and potentially deleterious effects of hormone
replacement therapy in the Woman’s Health Initiative.
Regardless of the procedure chosen, a computation of the
absolute risk of each component health outcome is cen-
tral to understanding the statistical power of such trial
designs and to developing procedures for monitoring
the trial (7).

2. ESTIMATION OF ABSOLUTE RISK

Follow-up data from a cohort are required to estimate
absolute risk. Gail et al. (/) studied a cohort of 243,221
white women followed over 5 yr in the Breast Cancer
Detection Demonstration Project (BCDDP) to estimate
the absolute risk of breast cancer. If risk factors such as
family history of breast cancer and age at first live birth
had been available for each of these women, one could
have cross-classified the women according to such risk
factors, and, for each combination of risk factors
(including initial age, a), estimated the absolute risk of
developing breast cancer in the next 5 yr.

This approach was not applicable for three reasons.
First, detailed risk factor information was available
only on the subset of 2582 women with breast cancer
and 3146 women without breast cancer who partici-

pated in a nested case-control study within the cohort.
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Second, even if detailed risk factor information had
been available on all cohort members, data on breast
cancer incidence would have been too sparse to yield
reliable estimates within many of the risk factor combi-
nations; thus, some modeling of joint effects on relative
risk was required. Finally, to make long-term projections
of absolute risk with only 5 yr of follow-up, age- and
risk-factor-specific risks will be assumed to remain
constant over calendar time.

Formula number 5 in reference (1) shows how to
compute absolute risk in terms of a relative risk func-
tion, r(t), a baseline hazard of the disease of interest,
h,(t), and the hazard of mortality from causes of death
except the disease of interest, h,(t). We discuss these
quantities next.

2.1. Relative Risk, r(t)

Relative risk, r(t), is the ratio of disease risk at age
¢t for a woman with risk factors X(¢) at age ¢ to the risk
for a woman whose risk factors are at their lowest
(“baseline”) level at age 7. The relative risk factor in
Gail et al. depended on age at menarche, age at first
live birth, number of affected first-degree relatives,
and number of previous breast biopsies. In projecting
risk, it was assumed that these factors remained con-
stant at their values determined at the age =« of the
initial consultation, but, using the same formulas, risk
projection could be altered to take changes in these
risk factors into account. Relative risk function r(z) can
be estimated from cohort data, or more feasibly from
case-control studies.

2.2. Baseline Hazard, h (1)

The baseline age-specific hazard h (1) is the age-
specific breast cancer incidence rate for women whose
risk factors were all at the lowest (baseline) level.
Follow-up data from cohorts yield an estimate of the
composite age-specific hazard rate 4",(z) that reflects a
mixture of women with various risk factor combina-
tions. Gail et al. estimated h,(z) from h (t)=h" (1) [1-
AR(t)], where AR(¢) is the attributable risk for women
aged ¢. Gail et al. estimated 4" (¢) from BCDDP follow-
up data and 1 — AR(¢) from BCDDP case-control data (7).

The original model of Gail et al. (1) was designed to
project all incident breast cancer, including in situ
breast cancer. Estimating the absolute probability of
invasive breast cancer to determine eligibility for the
Breast Cancer Prevention Trial (BCPT) (4), Anderson
et al. used population-based invasive breast cancer inci-
dence rates from the National Cancer Institute’s (NCI)
Surveillance, Epidemiology and End Result (SEER)
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program to estimate h” (1) (8,9). They estimated the
corresponding attributable risk needed to compute A (1)
by combining the relative risk function r(t) from Gail
et al. (1) with information on the prevalence of risk fac-
tors in the general population in the Cancer and Steroid
Hormone Study (10). The resulting “model 2,” which
was described and studied by Costantino et al. (9), very

accurately predicted the numbers of invasive breast

cancers actually observed in the BCPT.

The general strategy of estimating relative risk func-
tion #(¢) from a population-based case-control study
and estimating baseline hazard h,(t) by combining an
attributable risk estimate from population-based case-
control data with SEER data on age-specific composite
incidence, h",(1), is a powerful and practical approach
that could be used to develop models to project
absolute risk for other cancers, such as colon cancer.

2.3. The Hazard of Mortality From Causes Other
Than the Disease of Interest, h2(t)

The third ingredient needed to compute absolute
risk is the hazard of mortality, h,(t), from all causes of
death except the disease of interest. Gail et al. (7)
obtained h,(t) from general US mortality rates, and
assumed that h,(t) did not depend on the covariates
used to predict breast cancer incidence. In some appli-
cations, a risk factor such as a genetic mutation that
increases risk for the disease of interest might also
influence mortality from other causes. If such effects
are known, they can be incorporated into formula num-
ber 5 in Gail et al. (1) for computing absolute risk by
allowing h,(t), and the corresponding survival distribu-
tion, S,(1), to depend on covariates.

3. VALIDATING A MODEL
FOR PROJECTING ABSOLUTE RISK

Costantino et al. (9) reviewed previous efforts to
evaluate the original model of Gail et al. for projecting
total breast cancer incidence (“model 1) and the mod-
ified model for projecting the risk of invasive breast
cancer by Anderson and Redmond (“model 2”).
Costantino et al. compared the relative risk function,
which is common to both these models, with estimates
of this function from independent case-control and
cohort study data. The features of relative risk func-
tion were quantitatively consistent across studies,
with few exceptions. Costantino et al. then assessed
how well the observed number of breast cancers (O)
agreed with the expected number (E) based on models
1 and 2. A model} in which O and E are in good agree-
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ment is said to be well calibrated. Using data from the
placebo arm of the BCPT, Costantino et al. found a
ratio of E/O = 0.84 (95% confidence interval 0,73-0.97)
for all breast cancer (model 1) and E/O = 1.03 (95% con-
fidence interval 0.88-1.21) for invasive breast cancer
(model 2). Thus, the models are well calibrated, especially
model 2 for invasive breast cancer.

Rockhill et al. (11) confirmed the good calibration of
these models in a larger set of data from the Nurses
Health Study (NHS). However, they raised another
important criterion for consideration, namely the discrim-
inatory power of the model. Pointing out that distribu-
tion of absolute risk estimates in women in the NHS
who. ultimately developed breast cancer tended to be
only modestly higher than distribution of risk prediction
values in women who remained disease-free, they con-
cluded that the ability of the model to discriminate
women who will develop breast cancer from those who
will not was modest. (The area under the receiver oper-
ating curve, AUC-ROC, was estimated as 0.58). Thus,
despite these models being well calibrated and therefore
useful in weighing risks and benefits, as in tamoxifen use
(3), considerable scope remains for improving the sensi-
tivity, specificity, and discriminatory power of this model.

4. IMPROVING MODELS AND OTHER
FUTURE DIRECTIONS

One way to improve the discriminatory power of a
model is to include more powerful predictors. For
example, one might try to incorporate information on
mammographic density, on cytology from nipple aspi-
rates, or on genetic mutations to improve the discrimi-
natory power for identifying women who will develop
breast cancer. Such an effort to improve discriminatory
power is certainly worthwhile. However, an advantage
of the current Gail model (1), and of a model based
only on a detailed family history of breast cancer by
Claus et al. (12), is that they only require interview
data. Requiring information on more powerful (and
invasive) predictors can restrict the range of application
of the models.

Additional information must be obtained on the cali-
bration of available models in various ethnic and racial
groups. Work is needed to determine whether the rela-
tive risk function in Gail et al. (1), which was derived
from white women in the BCDDP, applies to other
racial or ethnic groups. The version of model 2 available
on the NCI's “Risk Disk” (http://bcra.nci.nih.gov/bre/)
includes separate baseline hazard estimates for black
women and Hispanic women, but more work is needed
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to check the calibration of the model in racial and ethnic
subgroups. Calibration must be also be checked of models
such as those proposed by Claus et al. (/2) and exten-
sions of that model strongly based on the assumption that
familial aggregation of breast cancer is due to an autoso-
mal dominant mutation. Considerable evidence indicates
that other factors contribute to such aggregation (/3).

Section 2.3. mentions a simple general strategy for
estimating the absolute risk of a cancer by combining
information on the relative risk function r(z) and the
attributable risk from a population-based case-control
study with SEER data on age-specific composite inci-
dence, k(). Ongoing work to develop a model to
project the risk of colon or rectum cancer is based on
this approach.

Models for projecting absolute risk to assist in medical
decision-making will usually require weighing absolute
risks of several health outcomes in the presence and
absence of a proposed intervention, as when considering
tamoxifen use (3) as mentioned in Section 1. An impor-
tant need in this area is development of individualized
models of absolute risk for each of the health endpoints
that influence the intervention decision. Epidemiologists
and risk modelers will need to take a broad view of the
‘available data resources. In weighing risks and benefits,
there is a pressing need to improve data sources for
estimating absolute risks for a range of health outcomes.
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